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The article presents results of a numerical solution of a nonsteady problem 
on the free discharge of a mixture of gases from a hemispherical volume with 
allowance for thermal decomposition of heat-insulating materials. 

The structural elements of certain heating and power plants have been provided with 
protective coatings which undergo thermal decomposition when they reach a certain tempera- 
ture. The decomposition is accompanied by the formation of gaseous products which enter 
the through part of the equipment. The time required to empty the plant is one of the 
most important characteristics in the solution of practical problems, so it is interesting 
to determine the degree to which the decomposition of the insulating material affects the 
dynamics of free discharge. 

We will examine a semiclosed volume V with its inside surface covered by a thermal in- 
sulating material (TIM). The working substance is comprised of a hot gas and volatile prod- 
ucts of the decomposition of the TIM. The gas and products are located in the volume V at 
a constant pressure P0 and To. They are discharged through an outlet orifice of area S, 
into an environment with the pressure Pen, Pen < P0- At the moment of time to, the supply 
of the high-enthalpy gas to the plant is shut off, and the period of nonsteady discharge of 
the two-component gas mixture begins. 

The mathematical description of the problem is based on the following assumptions. 

i. All of the chemical reactions accompanying the decomposition of the TIM are com- 
pleted in an infinitely small region adjacent to the surface S, while the final products 
of the degradation of the thermal insulating material and the working gas are subject to 
the equation of state P = pRT. Here, it is assumed that both components of the mixture 
have equal gas constants R and adiabatic exponents y. 

Preliminary estimates based on the results of numerical calculations showed that during 
the period over which the pressure decreases from P0 to the external pressure Pen, the kinet- 
ic energy of the gas flow is negligibly small compared to its internal energy. The second 
assumption follows from this statement. 

2. In the time interval in question, convective heat transfer in the volume V can be 
ignored, and we can allow for heat losses by restricting ourselves to radiative heat trans- 
fer. 

Following [i] and taking the above assumptions into consideration, we use the following 
equations to determine the change in the density of the gas mixture p and the pressure P in 
the volume V with mass transfer from the surface S and heat losses 
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Here, the initial conditions are p - P0/(RT0) , P = P0. The coefficient e accounts for the 
effect of the counterpressure Pen on the discharge of the gas and, in accordance with [2], 
is calculated from the relation 
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Introducing the dimensionless variables T = t/t0, p = P/P0, 0 = T/T0, 8 s = TsTo, v = u/u 0, 
q = Q/Q0 - where we take the corresponding values at the moment of time t = 0 as the scale 
values of pressure P0, temperature To, decomposition rate u0, and radiative heat transfer Q0 
and we take the relaxation time of the semiclosed volume t o = V/(A~RToS,) as the time scale 
t o - and using the equation of state to exclude the density of the gas mixture, we obtain a 
system of equations in dimensionless form to determine the change in pressure and tempera- 
ture: 

dp 
- -  = v (~vo. - ~ q  -- p V-o-e), ( 1 )  

d-c 
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with the initial conditions p = i, @ = i. 

The parameter ~ = PMu0S/G0 characterizes the ratio of the mass yield of TIM decomposi- 
tion products to the steady-state discharge of the gas mixture G o = APoS,/Rerff~0 . Physically, 
this parameter reflects the percentage of TIM decomposition products in the total discharge 
G o . It has a natural range 0 <_ ~ _< i. 

The parameter ~ = Q0(PMU0)/H0 represents the specific energy Q0/PMU0, due to heat loss- 

es, referred to the enthalpy of the gas He=-7 RTo. The complex $ changes within the 
7--I 

range 0 _< ~ _< 1 and is a quantitative characteristic of that part of the energy of the gas 
mixture which is transferred to the surface S by thermal radiation. 

A two-front model [3] is used to mathematically describe the degradation of a thermal 
insulating coating. In accordance with this model, the ablation front (external entrainment) 
and the pyrolysis front (internal decomposition) possess characteristic values of temperature 
T A, Tp (T A > Tp) and specific enthalpies. In the coordinate system connected with the py- 
rolysis front, the equations modeling heat transfer in a char-forming TIM have the following 
form: 

for the coke layer of the thickness 6(t) 

c)7['r~ " a2Tn OTri - -  8 < x < 0 ,  ( 3 ) 
(,oc)~ ot = z~ ~ + [(PM-- P~) c. + Oc) n] .p o----7--~ ' 

for the undecomposed material 

OTM _ ~ OZTM hTM 
(ac)~ at Ox ---7-" q- (~,.,e)~ u~�9 --,Ox x > 0 ,  

(4) 
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with the initial condition T(x, 0) = TH(X) and the boundary conditions: 

on the ablation front x = --6 

5Tn 

0X : �9 
(5) 

on the pyrolysis front, x = 0, 

_ _  ,Ln OT'n __ ~ 57"M Ox ~M --~-x + OM upH p, TH (O, 0=T~(0,  t), (6) 

away from the ablation surface, x + 

TM(x, i ) =  T~. ( 7 )  

The term (PM - PH)CvUp(STH/Sx) in Eq. (3) describes heat transfer between diffusing 
pyrolytic gases and the porous skeleton of the coke residue [4], while the parameter ~(UA, 
up, T, T s .... ) ~ 1 in boundary condition (5) considers the reduction in heat flux Q by prod- 
ucts of the TIM degradation [4, 5]. 

Here, to find the rate of disintegration of the heat-insulating coating during the peri- 
od of free discharge, we use the steady-state solution of system (3)-(4) with the boundary 

conditions (5)-(7), u ~ u A = up: 

u = ~l(~/w, 

W = DnH A + 9MHp + (0c)n (T A - -  Tp) -[-- (Pc)M (Tp - -  To,,) -[- (PM - -  Pn) C v (TA - -  Tp).  

( 8 )  

Here, it is assumed that the velocity u changes in a quasisteady manner over time in rela- 
tion to the running value of the heat flux. 

In accordance with the chosen model of TIM decomposition, the temperature of the surface 
of the material is constant and is equal to: 

08 = T A/To. ( 9 )  

The parameter 0 s is the relative temperature of the surface of the protective coating 
and, with allowance for the fact that To > T A, varies within the range 0 < 0 s < i. 

Equation (8) also gives the relationship between the scale factors u 0 and Q0- At ~ = i, 
it follows from this equation that 

v = q (i0) 

Equations (9) and (i0) close system (1)-(2). We solved the system by using a Runge- 
Kutta finite-difference scheme with fourth-order accuracy [6]. 

We searched for the numerical solution of the problem within the ranges of the param- 
eters ~, B, 0s only, since - with allowance for heat losses and the mass yield of TIM decom- 
position products - we could ignore the effect of counterpressure Pen and the adiabatic 
exponent y on the time of completion of discharge x c. Here, the quantity Xc is examined in 
relation to the quantity ~a - the same characteristic obtained under adiabatic conditions. 
The moment T c corresponds to satisfaction of the condition p(~) ~ 1,001 Pen, where Pen = 
Pen/P0. This inequality is used to determine the time of emptying of the plant in an adia- 
batic calculation of x a, Meanwhile, to compare the general and adiabatic solutions in the 
last case, it is assumed that the pressure Pa(~) in the volume V is equal to Pen for all 
T ~ ~a- 

Given small values of mass transfer from the TIM ablation surface ~ ~ 0.i and any level 
of heat loss ~ @ [0; i], the change in the parameters within the semiclosed volume differs 
little from adiabatic discharge. A characteristic feature of this case is that the decompo- 
sition of the insulating coating is accompanied by discharge of gas throughout nearly the 
entire time interval 0 ~ T ~ T c and, for ~ = 0.I, results in the time T c being 22% (0 s = 
0.2) and 10% (0 s = 0.6) greater than the value of ~a- 
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Fig. 2 

Fig. i. Change over time in the pressure in the semi-closed 
volume under adiabatic conditions Pa and with allowance for 
decomposition of the TIM Ap = p -- Pa; @s = 0.4: i) ~ = 0.2, 

= 0.2; 2) 1.0 and 0.2; 3) 1.0 and 1.0; 0s = 0.8; 4) ~ = 
0.2, ~ = 0.2: 5) 1.0 and 1.0. 

Fig. 2. Dependence of gas temperature on time; • is the 
change in temperature under adiabatic conditions. The curves 
are numbered in the same manner as in Fig. i. 

The products of the TIM degradation have a greater effect at moderate and high values 
of the parameters ~ and 6. An increase in the amount of gas removed from the surface S per 
second leads to a significant deviation of pressure p from the adiabatic value Pa (Fig. i). 
The marks on the curves Ap(~) correspond to the moments at which the TIM ceases to function 
T H. The relation determining the time ~N is the inequality v(m E) ~ 0, which in turn corre- 
sponds to the condition 8(mE) ~ 0 s. At �9 ~ ~E, it is assumed that v = q = 0. 

It can be seen from the graph (curves 1 and 2, Fig. i) that with ~ = 1 and unchanged 
values of ~ and 0s, the moment m arrives earlier than with ~ = 0.2. This can be explained 
as follows. 

The entry of volatile products of TIM decomposition into the system reduces the enthalpy 
of the gas mixture, since the volatile products have a lower temperature than the gas occupy- 
ing the system at �9 = 0. It is obvious that, Other conditions being equal, the reduction 
in enthalpy will be greater, the more intensive the injection from the surface S. Thus, for 

+ 1 and $ = idem, 0 s = idem, the gradient of the reduction in gas temperature in the vol: 
ume V should be greater than the gradient of the function 8(m) at smaller values of ~. As a 
result, the temperature of the gas 0(m) will more quickly reach the minimum value 0 s at 
which the TIM decomposition will continue, while the moment T E is shifted in the direction 
of smaller values. This is confirmed by the results of calculations presented in Fig. 2 
(curves 1 and 2). Here, the dark points denote the moments of time TE, while the clear 
points represent the time of completion of discharge. 

An increase in the level of heat losses (curves 2 and 3, Fig. 2) also leads to a reduc- 
tion in the temperature of the gas mixture compared to adiabatic flow conditions. The change 
in pressure in the volume V is not as unambiguous and depends on which of two factors - mass 
delivery of TIM degradation products or heat loss - prevails in the given case. For example, 
an increase in the parameter ~ causes the pressure to increase substantially compared to the 
function pa(m) (curve 2, Fig. i), while an increase in the parameter $ causes pressure to de- 
crease relative to pa(~) at the initial moments of time (curve 3, Fig. i). 

These tendencies are also manifest for higher values of the dimensionless temperature 
of the TIM (curves 4 and 5, Figs. 1 and 2). Meanwhile, as in the case of small ~, these 
variants are characterized by slight deviation of pressure and temperature from the corre- 
sponding values pa(~) and ea(m). IIowever, this is due to another reason - rapid cessation 
of the TIM decomposition process due to earlier satisfaction of the condition 0(m) ~ e s. 

The completed analysis provides evidence of the very strong effect of the parameters 
~, B, and 0 s on the time ~ (Fig. 3), while the relation T c = mc(~, ~, 0 s) is more monotonic 
in character (Fig. 4). Here, the variants for which ~ > 0, ~ = 0 correspond to flow of the 
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Fig. 4 

Fig. 3. Time of cessation of TIM decomposition in relation 
to the parameters ~ and $ at 0s = 0.4. 

Fig. 4. Dependence of the time of completion of the dis- 
charge process on the parameters ~, $, and 0s: i) 8 s = 0.4; 
2) 0 . 8 .  

gas without heat loss but with additional delivery of mass at the rate v proportional to 0 4 .  

In the cases ~ = 0, ~ > 0, the gas is freely discharged under adiabatic conditions. 

It can be seen from Fig. 4 that the region in which the level of the relative heat loss 
affects the time of completion of discharge ~H is basically restricted to the range 0 
~ 0.2. This allows us to approximate the surface ~c with the simple expression 

Tc 
--I @ 0,6 ( 1 - -  0~) ~ 1/3 (ii) 

%a 

for =C[0; I], ~C[0, 2; I], 0sC[0 , 2; I). 

In order to use Eq. (ii) to evaluate the dimensionless time of emptying Of a semiclosed 
volume with allowance for thermal decomposition of the TIM, it is necessary to use relations 
presented above to determine the temperature of the surface of the material 8 s and the rela- 
tive mass yield of degradation products ~. The adiabatic time of discharge m a can be found 
from the expression 

~--I 

% -- p 
V - - 1  en 2v - -  1 J, 

1 

which f o l l o w s  from the  s o l u t i o n  o f  Eq. (1)  under  a d i a b a t i c  c o n d i t i o n s  (~ = 0, 0 = p ( u  
and w i t h  a c r i t i c a l  f low reg ime  (e = 1) .  

To d e t e r m i n e  t h e  r e l i a b i l i t y  o f  our  r e s u l t s ,  we p e r f o r m e d  a s e r i e s  o f  s i m u l t a n e o u s  c a l -  
c u l a t i o n s  o f  Eqs.  (1)  and (2)  w i t h  sy s t em ( 3 ) - ( 4 ) .  The l a t t e r  e q u a t i o n s  model h e a t  p r o p a g a -  
t i o n  f o r  a c h a r - f o r m i n g  m a t e r i a l  in  a c o m p l e t e  f o r m u l a t i o n  c o n s i d e r i n g  n o n s t e a d y  decompos i -  
t i o n  when t h e  t e m p e r a t u r e  o f  t h e  TIM s u r f a c e  i s  below t h e  t h r e s h o l d  v a l u e  T A. In  t h i s  c a s e ,  
t h e  r a t e  o f  d e c o m p o s i t i o n  i s  no l o n g e r  d e t e r m i n e d  by Eq. ( 8 ) ,  and t h e  t e m p e r a t u r e  o f  t h e  s u r -  
f a c e  0 s c a n n o t  be found from Eq. ( 9 ) .  These q u a n t i t i e s  can be d e t e r m i n e d  o n l y  by n u m e r i c a l  
methods .  I n  p e r f o r m i n g  t h e  c a l c u l a t i o n s ,  we a l s o  c o n s i d e r e d  b o t h  t h e  c o n v e c t i v e  component  
o f  h e a t  f l u x  and t h e  r e d u c t i o n  in  h e a t  f l u x  by t h e  d e c o m p o s i t i o n  p r o d u c t s .  The c o e f f i c i e n t  
of convective heat transfer was calculated from relations presented in [7] in which it is 
dependent on the Reynolds number. The Reynolds number was evaluated from the running value 
of gas discharge. 

These additional considerations, while not qualitatively changing the flow pattern, in- 
crease the time ~c by 5-15% relative to the quasisteady solution. The exact increase in ~c 
depends on the combination of values of the parameters ~, ~, and 0 s. Since Eq. (ii) also 
gives a somewhat exaggerated (by an average of 6%) result, the accuracy of the proposed for- 
mula (ii) can be considered acceptable for engineering calculations. 
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NOTATION 

V, volume; S, area; t, ~; P, p; T, @; u, v; Q, q, dimensional and dimensionless time, 
pressure, temperature, TIM decomposition rate, and heat flux; y, adiabatic exponent; R, 
gas constant; p, density; H, specific enthalpy; c, specific heat; I, thermal conductivity; 
~, 6, 0s, dimensionless complexes; s, coefficient expressing the radiative properties of 
the gas medium and the heat-transfer surface; o, Stefan-Boltzmann constant. Indices: 0, 
initial state and scale factors; s, surface; H, coke; M, TIM material; P, pyrolysis front; 
A, ablation front; v, volatile degradation products; a, adiabatic conditions; c, completion 
of discharge. 
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TEMPERATURE JUMP ACROSS A PLANE INTERFACE FOR A PHASE TRANSITION 

IN A PURE LIQUID 

A. P. Osipov, M. G. Semena, and Yu. Yu. Sergeev UDC 536.42 

We develop a theoretical model of the development of a temperature jump 
across the boundary between phases during a phase transition in pure liquids. 

The temperature is the same across a plane boundary between the liquid and gas phases 
if there is no evaporation or condensation. 

In order to maintain the stability of the processes of evaporation or condensation 
there must be a difference between the temperatures of the vapor and liquid at the boundary 
between the phases. This difference is usually referred to as a temperature jump in the 
literature. The temperature jump across the boundary between the phases is usually small: 
according to the data of [I, 2] it is of order of a tenth or a hundredth of a degree and 
hence it is neglected in engineering calculations of heat-exchange devices. 

A theoretical calculation of the temperature jump has not been given in the literature, 
while the experimental data contradict one another [1-3]. However, general considerations 
and the experimental data both suggest that the temperature jump in the presence of a phase 
transition will increase as the vapor pressure drops, all other things being equal. This 
fact is important in the Operation of heat-exchange devices such as a heat pipe operating 
at comparatively low pressure. Hence a theoretical calculation of the temperature jump in 
the presence of evaporation or condensation is a problem of current interest. 

We consider the condensation of a pure vapor onto a liquid surface. A schematic dia- 
gram of the process is shown in Fig. i. 

For condensation the surface of the liquid must always be somewhat colder than the va- 
por. In this process some of the molecules of the liquid leave the surface and go into the 
vapor; we let G 2 be the corresponding mass flux. A mass flux G v of vapor molecules approaches 
the interface i--I, and there is a mass flux of molecules G I passing into the liquid. 
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